lar compounds has been previously described by others.¹ TABLE I

CARCINOSTATIC ACTIVITY OF SOME 2-AMINO-1,3,4-THIADI-						
AZOLES						
	S9 Melan			10 astoma %		HED osarcoma
R	Daily dose, mg./kg.	Tumor ^a in- hibition	Daily dose, mg./kg.	Tumor ^a in- hibition	Daily dose, mg./kg	Tumor ^a in- . hibition
2-R-Amino-1,3,4-thiadiazole						
H	25	94	12 0	71	100	99
	3.75	57	100	51	50	94
CH3	250	94	500	61		
	187	78	375	40		
C_2H_{δ}	100	88	200	63	250	94
	15	70	150	51		
Allyl	125	89	125	62	100	28
	62.5	82	62.5	26		
Phenyl	150	0	37.5	8		
	75	0	12.5	0		
Acetyl	100	81	200	78	150	61
	75	33	100	23	75	52
	2-Am	ino-5-R-	1,3,4 - thi	adiazole		
OH	187	54	500	70		
			250	50		
SH	500	27	500	0	500	0
	250	0	250	0	250	0
C1	100	87	100	10	25 0	87
	75	76	75	31	125	80
2-R-Amino-5-methyl-1,3,4-thiadiazole						
CH2	300	2 0	300	0		
•	125	0	125	15		
Allyl	250	30	250	0		
-	125	0	125	0		
^a % tumor inhibition =						

 $100 - \frac{\text{Av. tumor weight of treated mice} \times 100}{\text{Av. tumor weight of control mice}}$

The tumors used were the S-91 melanoma of the DBA-line 1 mouse, the 8110 glioblastoma of the A mouse and the 6C3HED lymphosarcoma of the C3H mouse. These tumors were implanted into the appropriate strain of mouse and allowed to become established before treatment was started. The compounds were given in daily intraperitoneal doses at the levels indicated in Table I. The melanoma was treated for two weeks, the other tumors for one week. The tumors were then excised and weighed. The highest doses shown are approximately the maximum tolerated doses of the compounds.

From the results shown in Table I the parent compound, 2-amino-1,3,4-thiadiazole, appears to be the most active. The 2-lower alkylamino and 2acylamino derivatives were also active and less toxic than the parent amino compound, while the 2phenylamino derivative was inactive. In most cases substitution in the 5 position reduced the activity of the 2-amino derivatives.

Acknowledgment.---We wish to acknowledge the

(1) (a) L. L. Bambas, "The Chemistry of Heterocyclic Compounds," Interscience Publishers, Inc., New York, N. Y., 1952; (b) M. Freund and H. P. Schwartz, Ber., 29, 2487 (1896). helpful advice of Dr. Sidney Farber in evaluating these experiments.

	J. J. ULESON
	A. SLOBODA
	W. P. Troy
American Cyanamid Company	S. L. HALLIDAY
Research Division	M. J. LANDES
Lederle Laboratories	R. B. Angier
Pearl River, New York	J. Semb
	K. Cyr
	J. H. Williams

Received October 21, 1955

THE OCCURRENCE OF DEOXY-PYRIMIDINE NU-CLEOTIDES IN THE ACID-SOLUBLE EXTRACT OF THYMUS¹

Sir:

A previous report suggesting the natural occurrence of thymidinetriphosphate and possibly other deoxy-nucleotides has appeared.² The recently reported³ synthesis in vitro of ribo-polynucleotides from diphospho-ribonucleotides with a soluble enzyme preparation from Azotobacter vinelandii has drawn attention to the high-energy nucleotides as direct precursors of polynucleotides. Although Kanazir⁴ has reported finding thymidylic acid in soluble extracts of E. coli and Schneider⁵ has reported finding deoxy-pyrimidine nucleosides in rat tissue extracts, no one, to the authors' knowledge, has reported finding deoxy-nucleotides in soluble extracts of mammalian tissues. This report presents evidence for the occurrence of the mono-, diand triphosphate derivatives of thymidine and deoxycytidine in cold perchloric acid extracts of fresh calf thymus.

The neutralized extract was chromatographed on Dowex-1 by extended gradient elution⁶ with the formic acid system. A compound tentatively identified as TTP,7 but poorly resolved from GTP and UTP, was hydrolyzed in N HCl and rechromatographed in the AM-F system⁶ to yield TMP. Analytical data, in $\mu M./\mu M.$ of nucleotide (amounts based on ultraviolet spectral data), were: deoxyribose,⁸ 0.93; 5'-P,⁶ 0.96; and total P, 0.99. On paper chromatography in three-solvent systems, the sample exhibited essentially the same $R_{\rm f}$'s as authentic TMP (Table I). Hydrolysis of this TMP at the glycosidic bond gave a compound which had an $R_{\rm f}$ identical to thymine in three solvent systems (Table II). Incomplete enzymatic hydrolysis of the TTP peak by potato apyrase⁹ gave TMP and

(1) This work performed under Atomic Energy Commission Contract No. AT(11-1)-75.

(2) R. L. Potter, Fed. Proc., 14, 263 (1955).

(3) M. Grunberg-Manago and S. Ochoa, THIS JOURNAL, 77, 3165 (1955); M. Grunberg-Manago and S. Ochoa, Abstracts of Papers Presented at the American Chemical Society Meetings, Sept. 11-16, 1955.

(4) D. Kanazir, Biochim. et Biophys. Acta, 13, 589 (1954).

(5) W. C. Schneider, J. Biol. Chem., 216, 287 (1955).

(6) R. B. Hurlbert, H. Schmitz, A. Brumm and V. R. Potter, *ibid.*, 209, 23 (1954).

(7) The following abbreviations have been used: R_f , ratio of the movement of a band to the movement of the solvent front; AM-F, ammonium formate; TMP, TDP, TTP, the mono, di-, and triphosphates of thymidine; ATP, adenosine triphosphate; GTP, guanosine triphosphate; UTP, uridine triphosphate; CMP, CDP, CTP, D-CMP, D-CDP, D-CTP, the mono-, di-, and triphosphates of cytidine and deaxy-cytidine, respectively.

(8) S. Brody, Acta Chem. Scand., 7, 502 (1953).

(9) P. S. Kirshnan, Arch. Biochem., 20, 261 (1949).

. . .

Table I

Paper Chromatography of Thymidylic Acid Obtained by Acid Hydrolysis of the Thymidinetriphosphate Peak^a

	R(
System	Sample	TMP
Isopropyl alcohol-HCl ^b	0.91	0.91
Isobutyric acid–ammonia ^e	. 59	. 59
N-Propyl alcohol–ammonia ^d	.26	.29

^a Hydrolysis, 10 minutes in N HCl at 100°. ^bG. R. Wyatt, *Biochem. J.*, **48**, 584 (1951). ^c See reference (9). ^dC. S. Hanes and F. A. Isherwood, *Nature*, **164**, 1107 (1949).

TDP which were separated by ion-exchange chromatography.

TABLE II

PAPER CHROMATOGRAPHY OF A BASE FROM THE THYMIDINE-TRIPHOSPHATE PEAK⁴

	R		
System	Sample	Thymine	
Isopropyl alcohol–HCl ^b	0.79	0.79	
Butyl alcohol–water ^c	. 52	.52	
Isobutyric acid–ammonia ^d	.81	. 81	

^a An aliquot of the TMP sample obtained by acid hydrolysis of the TTP peak (cf. Table I) was hydrolyzed 1 hour in 98% formic acid at 175° in a sealed tube. ^b See footnote (b) Table I. °R. Markham and J. D. Smith, *Biochem. J.*, **45**, 294 (1949). ^d See reference (9).

TTP obtained from another chromatogram was purified by paper chromatography.⁹ The isolated material with a D_{275}/D_{260} ratio of 0.92 contained per μ M. of TTP: deoxyribose, 0.75 μ M.; acid-labile P, 1.55 μ M.; and total P, 2.47 μ M. Deoxyribose: acid-labile P: total P = 0.92:1.88:3.00.

The only evidence for TDP per se was the appearance of 2.0 μ M. of TMP in an enzymatic (apyrase) hydrolysate of the ATP peak. Chromatographic evidence¹¹ and technical considerations^{6,12} suggest that TDP, if it exists, would appear in or near the ATP peak.

Thymidylic acid (2.0 μ M.) was found by rechromatography of the UMP peak (AM-F system): deoxyribose, 1.02 μ M./ μ M. of TMP and total P, 0.97 μ M./ μ M. of TMP.

Acid hydrolysis of the CTP peak gave a mixture of cytidylic acids which could be resolved into CMP and D-CMP by either ion-exchange using the borate technique¹⁸ or paper chromatography.¹⁰ In addition, paper chromatography⁹ of the CTP peak purified on the AM-F system⁶ gave only two bands, each of which had identical spectra in acid (maximum at 280 m μ , minimum at 242 m μ) and alkali. The faster moving band contained per μ M. of D-CTP: deoxyribose, 0.86 μ M.; acid-labile P, 1.75 μ M.; and total P, 2.62 μ M.

Rechromatography of the CDP peak in the AM-F system gave what appeared to be only CDP 10.4 μ M.). A Brody test, however, indicated 0.41 μ M. of deoxyribose/ μ M. of nucleotide. Paper chromatography⁹ resolved the mixture into CDP and D-CDP. The latter contained: deoxyribose,

(10) H. A. Krebs and R. Hems, Biochim. et Biophys. Acta, 12, 172 (1953).

(12) L. I. Hecht, V. R. Potter and E. Herbert, Biochim. et Biophys. Acta, 15, 134 (1954).

(13) J. X. Khym and W. E. Cohn, ibid., 15, 139 (1954).

0.87 μ M.; acid-labile P, 0.87 μ M.; and total P, 1.8 μ M. (data expressed per μ M. of D-CDP).

By the same technique the CMP peak yielded about one μ M. of D-CMP.

It should be pointed out that all of the cytidine nucleotide preparations so far examined contained deoxyribose and ribose in roughly a 40:60 ratio.

No evidence for deoxypurine nucleotides has been found.

Atomic Energy Commission Richard L. Potter Biological Effects of Irradiation Laboratory University of Michigan Sondra Schlesinger Ann Arbor, Michigan

Received November 1, 1955

CO-FACTOR REQUIREMENTS FOR THE INCORPORA-TION OF H₂C¹⁴O AND SERINE-3-C¹⁴ INTO METHIO-NINE¹

Sir:

Using H₂C¹⁴O and serine-3-C¹⁴ as one-carbon sources, we have investigated the co-factor requirements for the in vitro incorporation of these compounds into methionine methyl groups by cell-free extracts of sheep liver. The methyl groups of methionine were assayed by cleavage with HI² and trapping the evolved CH₃I with trimethylamine.³ The requirements for Mg++, ATP, DPN and homocysteine have been shown with either H₂CO or serine as the one-carbon source, whereas, the co-factor effect of leucovorin is apparent only when H_2CO is utilized (Table I). The requirement for pyridoxal phosphate (PLP), although not apparent from the data of Table I, is demonstrated in Table II where data for the pre-incubation of enzyme with PLP, ATP, and deoxypyridoxine (DPX) in various combinations indicate that the inhibition of incorporation of both $H_2C^{14}O$ and serine-3- C^{14} by DPX can be partially reversed by PLP.

TABLE I

CO-Factor Requirements for the Incorporation of Serine-3-C14 and $\rm H_2C14O$ into Methionine

SERINE-3-C¹⁴ AND H_2 C¹⁴O INTO METHIONINE Each vessel contained 20 µmoles DL-homocysteine, 20 µmoles DL-serine-3-C¹⁴ (14,100 ct./min./µmole) or 11.4 µmoles H_2 C¹⁴O (16,800 ct./min./µmole), 1 µmole L-methionine, 10 µmoles MgSO₄, 20 µmoles ATP, 2 µmoles DPN, 1 µmole pyridoxal phosphate, 400 γ leucovorin, 200 µmoles tris-(hydroxymethyl) aminomethane (Tris) at pH 7.3, and 1 ml. enzyme. Enzyme was prepared by homogenizing 1 part sheep liver with 2 parts Tris buffer, 0.1 M, pH 7.3, and dialyzing the supernatant fluid obtained by centrifuging at 100,000 × g against 0.025M Tris buffer for 24 hours. Final vol. 3 ml., incubated under nitrogen at 37° for 2 hours. Counts in methionine

	Counts in methionine methyl groups		
Omission	Serine-3-C ¹⁴ ct./min.	H ₂ C ¹⁴ O ct./min.	
None	15,650	3800	
Homocysteine	22 0	380	
Methionine	3,660	780	
MgSO4	3 2 0	85	
ATP	55	0	
DPN	4,430	925	
Pyridoxal phosphate	14,400	42 10	
Leucovorin	13,900	1070	
Homocysteine Methionine MgSO₄ ATP DPN Pyridoxal phosphate	220 3,660 320 55 4,430 14,400	380 780 85 0 925 4210	

(1) Aided by research grants from the National Institutes of Health, U. S. Public Health Service, and the California Division of the American Cancer Society.

(2) H. D. Baernstein, J. Biol. Chem., 106, 451 (1934); 115, 25 (1936).

(3) W. Sakami, ibid., 187, 369 (1950).

⁽¹¹⁾ Data to be presented in a more complete publication.